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ABSTRACT

A new decision-theoretic approach to Nonlinear Programming Problem

with stochastic constraints is introduced. The Stochastic Program (SP)

is replaced by a Deterministic Program (DP) in which a term is added to

the objective function to penalize solutions which are not feasible in

the mear9' The special feature of Dur-approach is the choice of the

penalty function PE% which is given in terms of the relative entropy

functional, and is accordingly called enjropic penalty. It is shown

that P E has properties which make it suitable to treat stochastic

programs. Some of these properties are derived via a dual representation

of the entropic-penalty which also enable one to compute P more easily,

in particular if the constraints in (SP) are stochastically independent.

The dual representation is also used to express the Deterministic Problem

(DP) as a saddle function problem. For problems in which the raodoinness

j occurs in the rhs of the constraints, it is shown that the dual problem

of (DP) is equivalent to Expected Utility Maximization of the classical

Lagrangian dual function of (SP), with the utility being of the constant-

risk-aversion type. Fiually, mean-variance approximations of PE and

the induced Approximate Deterministic Program are considered.

I
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INTRODUCTION

Mathematical Programming problems with stochastic constraints,

(SP) inf{g 0 (x): g(x,b) >a),

dependening on a random vector b, are the subject of our investigation.

A new decision-theoretic approach is suggested in the paper as a possible

way to treat these stochastic programs. The approach is based on imitat-

ing the penalty function method of deterministic Nonlinear Programming.

In this method the constrained problem is replaced by an unconstrained

one, in which the new objective function has the property of "penalizing"

(increasing the minimand) violations of the constraints. With an

appropriate interpretation of "violation of constraints" in the stochastic

case, and with an appropriate choice of the penalty function, to reflect

the stochastic environment of the problem, we derive a deterministic

problem (DP) replacing (SP):

(DP) inf{go(X) + pPE(X)}

where p > 0 is a penalty parameter, and P is our penalty function.

This function is given in terms of the relative entropy functional,

widely used in Statistical Information Theory, [5], [6].

If fb is the generalized density of the random vector b E Rk,

and Dk is the set of all generalized densities f of random vectors

z E Rk (all absolutely continuous with respect to a common nonnegative

measure dt), then the relative entropy I(f,fb ) between the random

vectors z and b is

Jf(t)log ft dt
b 

.
ET
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The penalty function is given by

PE(x)= inf {I(ffb): Jg(xt)f(t)dt ) a}
fEDk

and is called accordingly entropic penalty. The motivation for choosing

P E and the induced deterministic program (DP) is discussed in Chap.l.

Properties of the entropic penalty, studied in Chap. 2, help further to

demonstrate the appropriateness of using (DP). It is shown that PE(x)

penalizes "violation of constraint in the mean", i.e. PE(x) = 0 if

Eg(x,b) > a and PE(x) > 0 otherwise. In this sence (DP) is a

"relaxation" of the deterministic program

inf(go(X): Eg(x,b) >a)

which can be recovered from (DP) by letting p be large enough. The

latter program includes in particular the familiar chance constraints

problem [2]. Another desirable property of P. is that surely infeasible

solutions, i.e. those x's that are infeasible for any realization of

the random vector b, are excluded from (DP), since for those (and only

those) PE(x) = . It is also shown that a greater "violation in the

mean" of a constraint, results in a greater penalty.

Some of the above mentioned properties of the entropic penalty are

derived from its definition, while other rely heavily on a dual representa-

tion of PE' which also provides an easy way to compute it:

P ly ~~a - log e xhjPE(x) = sup fy g(x'b).
yZO

The duality theory needed to obtain the dual expression is developed in

Chap. 3. This representat3Ih ca~i be further simplified , and for

independent constraints (i.e. gi(x,b) = qo.(x,bi) and the bi's are

independent random variables) it has an explicit representation in term
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yg(x,b.)

of the function *i(t) = log Ee y Ig i and its derivative. The

dual representation also enable us to express the deterministic problem

(DP) as a saddle-value problem, and finally to demonstrate that (OP)

is equivalent to the problem

inf sup EU(zb(xy))

x yaO

where U is the Constant Risk Aversion (CRA) utility function

U(t) = -e-(l/p)t and tb(xly) is the classical Lagrangian corresponding

to (SP):

T
Lb(x,y) = go(X) - y (g(x,b) - a).

i The important special case of (SP):

(SP-RHS) inffg0 (x): g(x) < b)

is thoroughly discussed in Chap. 4. The outstanding result which is

obtained for such convex stochastic programs is the nature of the dual

problem to the primal entropic-penalty program (DP); The duaZl decision-

maker is an expected utility maximizer, posses3irg a CRA type utility

function U with an Arrow-Pratt risk indicator (-U'/U ) equal to the

reciprocal of the penalty parameter. While in the deterministic case

the dual problem is

I,. max (inf ib(Xy)),
y2-O x

in the stochastic case our approach leads to the dual problem

max EU(inf z b(xy)).
y!O x

L trhe Expected Utility Maximization is one of the fundamental

approaches of Economics arid Decision Theory tinder Uncortainty. The

* ,,., ,._,._ _tC=., ,,S ,w.- !" -'
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fact that (DP) generates such a sound dual is perhaps the most convinc-

ing argument in favor of the entropic penalty approach.

in Chap. 5 we obtain simple approximations of PE(X), in terms of

the mean vector and the variance-covariance matrix of the random vector

g(x,b). The approximated entropic penalty PE(x) is then given as the

optimal value of a simple convex quadratic program with only nonnegativity

constraints, or, for independent constraints, by an explicit formula

2

involving mi(x) = Egi(x,bi) and o.(x) - the variance of g.(x,b.):

WE(X = 1 - max(O,ai- mi(x))

E (x) L

For stochastic RHS Problems the approximations reduce to:

PE(x) = sup yT(V - g(x)) -2yTvy}

yzO

where v = Eb and V is the variance-cuvariance matrix of b. The

approximation is exact if b is jointly Normal: b - N(p,V).

Using these approximation in (DP) one obtains an Approximate

Deterministic Problem (ADP):

(ADP) inf{go(X) + pPE(X)}.

As an illustration, for a stochastic RHS Problem with independent bi's

(having vi and variance Gi) the Approximate Deterministic Problem is:

(ACP) in-F g(x) + P- r iax(o,g.(x) -11i)12l

The latter progranm is similar to tha one used in the classical

penalty Function method for the constrained (deterministic) problem

inf-goW: g(x) <,t

0 l , -" - | - v -
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except for the presence of the coefficients 1/01. The role of these,

in the stochastic case, is to attribute smaller significance to "more

ambiguous" constraints, i.e. those for which the rhs bi has larger

variance.

Problem (ADP) just mentioned, and a score of other problems

occuring in the paper, give rise to interesting problems in Nonsmooth

Optimization that may entail the use of numerical methods developed

for such purposes, see e.g. [1l, and [7].

As a general introduction to existing methods in Stochastic

Programing, the reader is referred to the excellent review articles

by Dempster (Part I in [3)) and Kall [4].

I

- ."b
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CHAPTER I THE ENTROPIC PENALTY APPROACH

Consider the nonlinear programning problem

(SP) inf{g 0(x): g(xb) > a)

where x E R n is the decision vector; b E Rk and a E 11m are fixed

parameters, and g is the vector-valued constraint function g: RnxRk -R.

Let the feasible set be denoted by

S b = {x: g(x,b) > a)

Frequently (P) is converted to an unconstrained problem by adjoining

to the objective function g 0(x) a penalty function P(x) and thus

replacing (P) with

inflg 0(x) + pP(x))(1

where p > 0 is a penalty parame~ter. The function P(x) is generally a dist-

ance function measuring how far is x from the feasible set, i.e.

P(x) =dist(x,S b),

but it can also be given in terms of the distance becveen b and the

set

=- {z: g(x,z) > alx

i.e.

PWx dist(b,'F) 1 I inf(dist(b,z): z E S1}
x x

Problem (1) becowes thiln

.if~ () P inle(distfb z): glx,z) > al (2)

-- z
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The original problem (P) is in fact a special case of problem (1) with

0 if g(x,b) )a

P(x) =
- otherwise

or with finite-valued P(-) but with penalty parameter p very large.

In other cases (1) (and hence (2)) can be viewed as a relaxation of (P).

Assume now (and henceforth in this paper) that the parameter vector

b is stochastic, with distribution function Fb(-), absolutely continuous

v,.r.t. a nonnegative measure dt, and possessing a generalized density

(Radon Nikodym derivative) fb(.). Let B a be the support of b.

Looking back at problem (2), one should naturally

think now of z as a random vector. Thus it remains

to interpret two things: (a) the meaning of a "distance between two

random variables" and (b) the meaning of "g(x,z) > a" when z is random.

As for point (a) there is a classical answer, which is the fundamental

concept in Statistical Information Theory (see e.g. the book by

Kullback [5])

dist(b,z) = If fb) f z M)log fzb dt .

The integral I(fz,f b ) is the so called relative entropy or divergence.

It legitimacy as a "distance function" comes (among other things) from

its well-known property

Prposition 1. I(f,f b) >0 and is equal to zero if and only if

fz bf
fz fb (a.e.).

• This is a short notation for

f f * (tl,. ,tk lu (tl,....k
..... r b  ,t k  ,...

6L
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As for the second point (b), we adopt the interpretation that

"g(x,z) a holds in the mean", i.e.

E zg(x,z) > a.

The result is a penalty function PE(-), called entropic penalty, which

is given by

PE(X)= fEDk ,f(t)log fffbTdt: Jgi( ,(t)f(t)dt >a, i i i...,m} (3)

where Dk is the set of all generalized densities of random v:ctors

z E R k, which are absolutely continuous w.r.t. the measure dt.
.1#

In terms of the entropic penalty, we introduce the Determinstic

Primal (DP) problem as a surrogate for the Stochastic Primal (SP)

problem:

(DP) inf(go(X) + pPE(x)}
'.

Let us n:ote then if x is such that Fb itself satisfies the

constraint in (3), i.e.

Ebg i(xb) >a i , i = l,...,m, (4)

then the optimal density is fb itself, and by Proposition I it follows

that P(x) = 0. At the same time, if x is such that (4) is violated

ten P(x) > 0. Therefore, (DP) is a relaxaLion of the following, more

naive, deterministic replacement of (SP), namely

inffeo(X): Ebg(xb) a a (5)
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As a concrete example, let g(xb) be chosen as

I if g(x) < b
g(x,b) = (6)

0 if g(x) i; b

and let a = 1-a (0 < a < 1). Problem (5) becomes the well-known

Chance Constrained program (see [2]):

(CC) inf{f(x): Pr(g(x) <b) > 1-a.

The corresponding Deterministic Primal, which in this case is

denoted (CCDP),

(CCDP) inf{go(x) + p.inf {l(f,fb): j f(t)dt > l-x}}
x fEDk g x)

penalizes violations of the chance constraints. (CC) can be recovered

from (CCDP) by choosing p sufficiently large.

I

,i, •

, , . . . .. . .. _ .. .I
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CHAPTER 2 - PROPERTIES OF THE ENTROPIC-PENALTY

In this Chapter some important properties of PE are derived.

Additional properties will be discussed in Chap. 3 as well. These

properties demonstrate the appropriateness of using the entropic penalty

for solving Stochastic Programming problem.

Proposition 2:

f 0 if Ebgi(xb) >a i  Vi

PE(X) = if gi(x) = sup gi(x,b) < ai  for some i
bEB

. positive and finite otherwise

Proof: By Proposition 1, P(X) > 0 with equality if and only if

the optimal f is equal to fb (a.e), this is possible if and only if

fb is feasible i.e. Ebgi(x,b) -a i , Vi. It remains to show that

PE(x) = if and only if gi(x) < ai  for some i. The latter means

that the constraints in (3) are infeasible,implyrng PE(x) =-. That

the opposite is also true (i.e., PE(x) = implies (3) is infeasible)

follows from Theorem l(b) in Chap. 3.

0

The proposition demonstrates that PE is a penalty function

for the constraints Eg(x,b) > a and a barrier function for the

constraints 5(x) > a. The Deterministic Primal problem (DP) can be

rewritten as

(OP) inf{go(X) + pPE(x): (x) >a}

x

Note that g(x) a means that x is not feasible for the original

(SP) problem fbrany realization of ', and exactly these sucl_

inFeasible solutions are ruled out by (DP)
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The next two results conicern independent constraints. We say that

g(x,b) ; a are independent constraints if the components {bi} of b

are independent random variables, and if, for each i, the i-th cons-

traint depends cnly on bi , i.e., k = m and

gi(xb) = gi(x,bi)

We make it clear that in this case, the set Dk in (3) is the set of

all generalized densities of random vectors z E Rk, with independent
m

components, so f(t,...Itm) = n fi(ti)., il

Proposition 3: For independent constraints, PE is given by

PE(x) = P P wherei =1 (7)iP (x) = Dn {Jfitilog fi(ti) [ ' ~ }

Proof: The result follows from the well-known additivity property

of the relative entropy for independent random variable ([5] Th. 2.1).

The proposition expresses the useful fact that, whenever the cons-

traints are independent, the penalty for the system of constraints

jequals to the sum of penalties for the individual constraints.

4 We say that xi is less feasible than x2  for the l-th constraint

(in the mean) if

A Ebgi(x1 b) - aI < Ebgi(x 2 ,b) - a1.

I-
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P'opositicn 4: Let the constraints of (SP-RHS) be independent. If x is

less feasible than x2 for the i-th constraints, then

P i(x1) > P1(x 2) 2

The next results concerns Stochastic RHS problems:

(SP-RHS) inf{g 0 (x): g(x) b}

This is a special case of (SP) with

g(x,b) = b - g(x), a = 0 (8)

Proposition 5: For a Stochastic RHS problem

PE(x) = inf {I(f,fb): Jtf(t)dt > g(x)}
fEDk

If (SP-RHS) is a convex program, then PE(X) is a convex function.

Proof: The equation (9) follows from a simple substitution of (8) in

(3). The convexity result will be proved in Chap. 4 via a dual

expression for PE' from which the conclusion of Proposition 4 follows too. L)

A convexity result holds also for the chance constrained problem (CC).

The proof is also postponed to Chap. 3 (see Remark 1, following

Example 1).

Proposition 6: If (CC) has independent and concave constraints (i.e.

for each i and each bi t Pr(gi(x) <b) is a concave function of x)

then PE(X) is a convex function.

~? $:.I
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CHAPTER 3 -A DUAL REPRESENTATION OF PEAND A SADDLE FUNCTION
REPRESENTATION OF (DP)

The value of the entropic penalty function P E at a given point x,

is the optimal value of the extremal problem

() inf 1(f) = f~)log dt
E) fEDkfft

subject to (10)

J gj(x~t)f(t)dt >a1. i = q.'

We will write this shortly as

P E(x) = inf(E).

By consticting a dual problem for (E), say (11), a dual representation

ofP will follow:

P E(x) = sup(H).

To construct (H) we first need an auxiliary result.

Lenmna 1: Let c(t) be a given positive summable function:

J c(t)dt =C <w
Then

i nf ff(t) log dt =-log fc(t)dt. (11)
fED k c tf

Proof: Use the identity

f(t)log f-~-t3dt=Jf(t) log fJ- dt - log C. (12)

N1OW, since c(t)/C is a density, it follows from Proposition I th.~t
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the first term in the rhs of (12) is minimized by f(t) = c(t)/C and

its optimal value is zero, so the infimal value of the lhs of (12)

is -log C, as claimed.
0

We now form the Lagragian of problem (E), L:Dk x RM R with

values

m
L(fy) = I(f) - y, yi gi(xt)f(t)dt + aTyi=l

The dual objective function is

g(y) = sup L(f,y)
fEDk

or, more explicitly

g(y) = inf {I(f)- yifgi(xt)f(t)dt + aTy}
fEDk

inf frog f t) ,yigi(xit)]f(t)dt} +aTy
fEDk

inf f() f(t)dt} + aTy

fEDk f j

= a T - log Jfb(t)e y igi(x, dt, (by Lemma 1).

So, the dual of (E) is

(H) sup (a'y - log fb(t)e dt}

Theorem 1: [Duality Theory for (E)-(H).]

(a) If (E) is feasible then inf(E) is attained and

min(E) = sup do.

(b) sup(H) < - if and only if (E) is feasible
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(c) sup(H) is attained if there exists a density f in Dk satisfying

the constraints (10) strictly, in which case

min(E) = max(H).

Moreover, if f*C Dk solves (E) and y* > 0 solves (H) then
-EYlgi(x,t)

f*(t) = fb(t)e ____x__t) (a.e.).zy~gi(x,t) (~.

Jf b( t)e 7 1 dt

Proof: We set problem (E) as a convex problem, in an appropriate vector

space, with finitely many linear constraints, as follows. Let M(B) be

the linear space of real-valued finite regular Borel measure (rBm) on B.

Let dt be a nonnegative rBm on B. For p E M(B),which is absolutly

continuous w.r.t. dt.we denote by A its Radon-Nikodym derivative.

Whenever p E S (the convex subset of probability measures) we call

f(t) = a (generalized) density. Let

f(t) dt if P is an abs. cont. probability

B(P) =I measure, and f = d_
dt

otherwise

and consider the linear operator A: p(B) Rm

* A Jg1(x,t)dp

A.(13)

gm(xt)du

Then, problem (E) amounts to

inf(J(p): Apa} (14)



- 16 -

flow, (H) is just the Lagrangian dual of (14) (which here coincides with

the Fenchel-Rockafellar dual [11) and most of the results in the theorem

follow from standard duality relations (e.g. [10], [11], and [8]).

Thus, the fact that the dual (H) has only nonnegativity constraints y 0

(and hence satisfying the strongest constraint qtalification) implies

lack of duality gap and attainment of the primal infimium. Part (c) is

just the usual dual statement. As for part (b), the implication

(E)feasible - sup(H) <

follows from weak duality. Thus, only the reverse implication

(E)infeasible - sup(H) = (15)

is exceptional here and needs special care.

The feasible set of (E) is

j AV> a TV = 1 v nonnegative (16)

where A is the linear operator (13), and T is the linear function

Using a duality theorem for linear program in vector spaces (e.g. [8],

Theorem 3.13.8, p. 68), it follows that the infeasibility of (16) is

equivalent to the feasibility of

m
A*y + T*v 4 0, y'a + v' > 0 y E R+, v E R . (17)

Here A*: Rm 4 C(B), T*: R - C(B) are the adjoints of A and T

respectively: A*y = Eyigi(x,t); T*v = v (a constant function in C(B) -

the linear spice of continuous function on B - the dual space of M(B)).

So, (17) implies that

A-s
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f j 0, E R such that

Eyigi(x,t) + v (0, y'a + > 0. (18)

Now, using the identity

0 = v - log ev

it is easy to see that the dual program (H) is equivalent to

sup {y'a + v - log Ifb(t)e yigi(x t)+v  (1)
y:O,vER 

b

By taking ,, v from (18), and M > 0 arbitrary large,'it is seen that

the sup in (19) is made arbitrary large by choosing y = My, v = My,

i.e. sup(H) =
0

From Theorem 1 ve obtain a dual representation of the entropic

penalty function, which is much simpler than the primal expression

given by (3):
m

PE(x) = sup {yTa - log if b(i l dt} (20)
yZO

This representation is a key factor in deriving important facts (some

mentioned already in Chap. 2) about PE and about the dual problem of

(DP). As an "appetizer" we obtain the explicit expression of PE for

independent chance constraints.

Emple 1: Problem (CC) with independent constraints is

. inffg0(x): Pr(gi(x) gb i) >-a i , i =

* and the corresponding (CCDP) problem is
(ii

infgo(x-) + pP (xl}

-- - ~ - - - - ~ ~ - - - - - - - - - ~ - - . ~ -
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By (20):

PI(x sup {y(l-ct,) - ogJb)E OXyER b

Recalling from (16) that

1 ifgi(x) <t

gi (x,t) 0 othe-vi se

we get from (21), in teriii of the cumulative distribution function

Fiof i

PI(x = sup {yO-ai) - loq-[l-F('.(x)))e' + F.(g.(x))]) (22)

By simple calcuius, the maximizing y is yt given by

.ogf -. r~i if F(g.(x)) > a.

0 if F(g1(x)) < a*

Substituting y~' in (22) yields

0 iIF F.i(g.(x)) <cx. i.e. Pr(g.(x) 4b)>Ia

P'(x) =(23)

~Iailog ai + 11ilgiIFF( )>
' ,l -F.(g.(x))) u.

Rem~ark 1: The function h.(t) = C. log -+ (1-ai) log I 1 is1 1 t 1 bt

convex and increasing for 0 < ai < t < 1 and h(ct.) = 0. If F.( g(x))

is convex (i.e. if Pr(g1(x) < bi) is concave in x) then h1(Fi(g 1(x))

is convex for x such that a1 < Fi(g 1 (x)). This proves that Pl(x) is

convex since ty the above and (23):
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PI(x h h(Max(aiFi(qi(W)).

The objective function in (M), in term of which PE is computed,

is yTa - *(y) where

*(y) = log Ebey g(x'h) (24)

If the random vector g(x,b) is nondegenerate (i.e. Vy # O, yTg(x,b)

is not a degenerate univariate random variable), then (y) is strictly

convex, as follows from the following:

m
Lemma 2: If Z is a nondegenerate random vector in R , then the

function

*(y) = log EZ
eyTZ

is strictly convex in y.

Proof: Consider the function h(t1 ,t2) tlt^' (0 <, < 1). It is

strictly concave for tI > 0, t2 > 0, t1 I t2 , so by Jensen inequality

XlASE(tlt ' ) < E(tl)'E( t2) - .
Tz TZylZ y2Z

Put t =e ,t 2 e ,then

EzeaI.e 2 < Eze )l (Eze y 2

or, taking log,

TT(Ay1+(l-A)y )Z Ez1Z y4z
log Eze Z< log E e + (l-A) log Eze

which proves the strict convexity of *(y).

0
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We will dcrive still another expression of PE in term of the conjugate

function q,' of ) i.e.

ON(u) = sup (u Ty - (y)).

y

Proposition 7:

PE(x) = inf *(u) (25)

uia

where 0* is the conjugate of the strictly convex function P, given

in (24). Moreover, if the expectation Ebey T (x"b) is finite for

every y then

: uT v 1(u) - (26)

where vp is the gradient vector of p, i.e. the i-th component of

j V* is

[V'(y) 1  
bgi(x,b)e

yTg (
x b)

T Ebeg(x,b)

Proof: By (20)

PE(x) = sup {yTa - *(y)} (27)
y O

The Lagrangian dual of the problem in the rhs of (27) is easily seen

to be

inf **(a+v)

v~tO

and with change of variables u = a+v one obtains (25). The strict

convexity of * follows from Lemma 2, and the finiteness assumption

implies that o is also smooth. Hence vo is a strictly monotone'I_ _ _ _ __ _ _ _
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mapping and 4 coincides with its Legendre Transform, which is

the rhs of (26) (see [12), Chap. 26).
0

Example 2: Consider the Stochastic RHS problem (SP-RHS) with b a

jointly Normal random vector, with mean vector p and covariance matrix

V (positive definite since b is assumed nondegenerate). Then a direct

computation shows that here (20) becomes the quadratic program:

PE(x) = sup {T (g(x) - ) - y

yao

while (27) is the dual quadratic program:

PE(x) = inf {(g(x) - v - u)TVl(g(x) -P -u))
u:O

For a Stochastic Program with independent constraint a further

j simplification of the expression for PE is possible. In fact, the

infimum in (25) can be computed, and we get an explicit representation

of PE in terms of the conjugate function i of

= yigi(x~b1)
i(Yi ) = log Ebie

We use the following notations: for a function h(t), h: R + R let

Dh dth, D'h (d h)

Let also

mi(x) = Eb igi(x,bi).

Proposition 8: For (SP), with independent constraints

m

= E (maxm-xi (28,E(X1 1
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where

M (1i W(9

Moreover, (t) is a strictly increasing function "or t > m1(xW

Proof: By Proposition 3. PE W zP'(>,), therefore we have to show that

Pl(x) = qt(max(mi(x),ai)).

Now, from Proposition 7:

P1(x) = inf 4p(u.
E 11ai

where is exactly given by (29). The function is strictly

convex and simple calculus shows that

PEi(x) = inf op-(u) = j',(nax(Dlp *(),a.)) (30)
E 2a 11

But it is a well known fact of conjugate functions that 0 = Op. so

D -1 **(0) = Dp(0) =E b gi(x~b.) = m.(x). (31)

Using this in (30), the desired expression for P i is obtained. To

prove the last statement of the proposition, note that from (31)

0 = D'p(mi x))

and since 0P is strictly convex, this implies

Db*(t) >0, for t >1 ~)

which establishes the claimed monotonicity.
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Remark 2: The last statement of Proposition 8 and (28) provides a

proof for Proposition 4.

Consider the saddle function

k(x,y) = gl(x) + p(y'a - log EbeT g(xb)). (32)

Then, by the dual expression (20) of PE' we see that the Deterministic

Primal problem (DP) becomes

(DP) inf sup k(x,y).
x y O

An equivalent program will be generated if we use another saddle function

- k(x,y/p)= -~y e p

obtained from k by one-to-one transformations of its domain and range.

Now, a little algebra shows th3t

£(x,y)= -Ebe {g(x) yT(g(xb)a)},

thus, we proved:

Theorem 2: The Deterministic Primal problem (DP), derived via the

entropic penalty approach, is equivalent to the saddle-function problem

(DP-EU) inf sup EU(zb(xly))
x y2O

-- t
where U(.) is the constant-risk-aversion utility function U(t)= -e P

(or any positive affine transformation of it) and where Lb(xy) is
I

the classical Lagrangian corresponding to the original (SP) problem, i.e.

W - T - -a).
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CHAPTER 4 - THE DUAL PRIO3LEM OF (DP) FOR STOCAHSTIC RHS PROGRIS

In this section we treat exclusively the problem

(SP-RIHS) inf{go(0) gi,(x) < b i, i = 1,...,m}

This is a specialization of the general (SP) problem with

g(x,b) = b-g(x) and a = 0. The expression for the entropic penalty,

is given in (9). From the results of Chap. 3, dual representations of

P are, by (20) and Proposition 7:

T
PE(X) = sup {yTg(x) - log Ebey b (34)y O

f1o PE(x) = )inf *(u) where *(y) = log Ebey T b, and

( €*(u) = uTv -l (u) - (v-l (u)).

If the bi's are independent random variables with E(bi) = vi, then

by Proposition 8:
m y1 bi

FrE(x) = 0 *(max(gi(x),Pi) where =i(y) log Eb e and

(36)

ft(t) W t1 - i(D-1 i(t)).

Note that by (34), if g(x) is convex so is PE(x), as was claimed in

Proposition 5. From Proposition 2 we also know that

=0 if g(x) < V

PE(x) if g(x) .bmax

positive and finite - otherwise
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Here binax is the vector whose i-th component is the right extreme

value of the support of b i . Therefore, the Deterministic Primal problem

is here a relaxation of the problem

iinf {go0(x): g(x) < 11}
! x

and it rules out surely infeasible solutions, i.e. those x's for

which g(x) C bmax

We have already computed PE for the case of joint Normal random

variables (Example 2). We add here two more examples for (SP-RHS)

with independent bi's.

Example 3: (Independent Poisson variates). Let the bi's be

independent random variable each having a Poisson distribution with

parameter (mean) Xi, so

f(k) 1 e"XiAk k = 0,1,2 ........

The function +.i(.) in (36) is the log of the moment generating

function, so

i ( y ) = xi(e y - 1).

. " The derivative is Dsi(y) = XieY, the inverse is D'l it)=log(t/xi)

and thus by (36):

#(t) =t log(t/A i) - t + A.

Note that is a convex and strictly increasing function for t> A1,

as anticipated by Proposition 8.
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The final expression for PE is by (36):

mE(x) = l( x i(x)i)) lo(x)_x i i

Exampe 4: (Independent Gamma variates). Let each bi  have a Gamma

distribution with parameters xi and ri , i.e. the density is
1

i ri'1 -Ait
f bi (t) = r, (xit )  e , t > 0.

The mean is ui. E(b.) = ri/., and the moment generating function is
-ri

(1 - y/x) , (y < xi). Therefore here

(y) = -rilog(l-Y/xi) = -rilog(l-YPi/ri), y < ri/ i ;

Df(y) = rII ; D I(t) = (ri/.i)(1-Pi/t), t > i

4(t) = ri[t/wi-l-log(t/i)] 1t 1 1i

We obtain finally from (36):

(gi = Eri) log(I +gi (x)'Ui)+ uPE(x) = r i {(% -~)+ loTg + g1 x~i)}

Note that for the Gamma distribution, the variance (02) of bi's is

, r./X2 = P2/ri, so ri = P?/o? and P is given in terms of the

mean and variance by

PE(x) (gi(x)-i) + (g(x)- (37)
P E~x)(gi, x)-1ilo
2  )+

t For a real number a we denote += max(m,O)
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In terms of the saddle function (32), which hercn becomes:

k(x,y) = go(x) + p(yTg(x) - log Ebeyb) , (38)

Thc Primal Deterministic Problem inf{go(x) + PE(4) is

(DP-RHS) inf sup k(x,y).
x yaO

We define the Dual Detcrministic Problem (DD-RHS) corresponding to

(DP-RHS) by

(DD-RHS) sup inf k(x,y).
yO x

Thus, the dual objective function is

h(y) = inf k(x,y) (k(x,y) given in (38))
x

and the dual problem is

(DD-RHS) sup h(y).t

The key issue, of course, regarding the dual pair (DP-RHS) and

(DD-RHS), is the lack of duality gap, which here corresponds to the

existence of saddle value for k, i.e. the validity of

inf sup k(x,y) = sup inf k(x,y). (39)

x yO y2O x

In this connection we make use of two conditions which guarantee (39)

for a general convex-concave saddle function k(x,y).

Condition 1: (Stoer [13) Corollary 2.13) "The inf sup k(x,y) is attained
x y2O

m t The problem may include implicitly more constraints on y coming

from the requirement EbeY <-



and k(x,,) is strictly concave".

Condition 2: (Rockafellar [9], Theorem 8(i), see in particular the

Example on page 173) "No nonzero y > 0 has the property

yTv.. y 0 V(x E p,, y > 0).",
T 0

We now establish a minimax theorem for k(x,y) in (38).

Theorem 3: Let (SP-RHS) be a convex aprogram, (i.e. go and gi,

i = l,...,m are convex functions), and consider the saddle function

in (38):

k(xy) = g (X) + p(YTg(x) - log Ebey b)

Then, either one of the following two conditions

(i inf sup k(x,y) is attained

x y>O

(ii) Bx E Rn such that g(x) < bmax '

implies the existance of a saddle value for k, i.e.

the validity of (39).

Proof: The convexity of g0, and all gi (i = l,...,m) implies that

k(.,y) Is convex for every y > 0. From Lenna 2 we know that

f(y) = log 
Ebey b

is strictly convex, hence k(x,.), in (38), Is strictly concave. There-

fore, condition (i) in the Theorem suffices to imply condition 1 of

Stoer. Condition 2 of Rockafellar reduces here to the nonexistence of

a nonzero yo > 0 such that

Org(x ) .g(beyTb)
Ee)] 0 v(x E Rn , y > 0). (40)

yEeyb
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lhis is clearly satisfied if

3i and y > 0 such that g(x) = b, (y) (41)

Ee~yb

To show that condition (ii) implies (41) it suffices to demonstrate that

bi = (b ) sup - 1(Y) • (42)

max i OyERm Yi(

Let i(Yi ) --,(OO,...,yi,... 0), 1 = 1,2,...,m, i.e.

Y1 bi(Yi) = log Ee

Note -that

sup 0j(yi) <  sup P-_ .j(y), vi
0-yiER OsyERM 3Yi

hence to prove (42) it suffices to prove that

y-bbi<  sup ,'(yi)= sup(E(biey1bl)b O u !Yi u !YiE R )I '-Y )eYb (43)
1 O1ysup Ee'ib

For this purpose consider a special case of problem (E) In Chap. 3

with a sinrle random variable bi, and with a1 = bit g1(x't) = t

and a single .jnstraint (the i-th), i.e.

(Edl olnf {If,fbl): ftf(t)dt >F }

fED1  b1  j

The dual program is (see Chap. 3)

(li) sup (biy - log Eey ibt  sup (biy -
05yER y- y

4;,,
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Program CE is clearly feasible (take f(t) = 1 for t = bi and

f(t) = 0 otherwise) and hence, by Theorem 1, sup(H i) < -. Now *.(y)

is convex and i(O) = 0, hence by the gradient inequality

o = *i(O)> i(y) - YiVy)

and we get

- sup(H i) = sup{b.y - *i(y)} > sup{biy - yij(y)}

= suply(b4 - (y))}
y-O

For the latter to be finite for y -'- it is necessary that b.'<lim,(Y),

1-

• but since is strictly increasing (a derivative of the strictly

convex function 4i) this is the same as (43), and the proof is completed.

0

Remark 3: Condition (ii), which guarantees the lack of duality gap

for (DP-RHS) and (DD-RHS), is extremely mild. Indeed, if it does not

hold, then for almost all realfzations of b, the original (SP) problem

is infeasible. If such ill-posed stochastic programs are rules out, then

the ertropic penalty Deterministic Primal always induces an equivalent

dual program. !e shall see shortly what is the meaning of this dual

program.

lReri- 4: Condition (ii) implies in fact a stronger saddle-value

resul't than (39), namely

inf sup {(; ,y) max iiff k(x,y).

x Y0 y O x

i.e. tV;, supromn.u of the dual objective function h(y) is attained.

(see (9]). Condition (i), which assimes that for some 0, 0
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inf sup k(x,y) = k(ij)

x y;O

implies in fact attainment of the dual saddle value at the same point,

i.e.

sup inf k(xy) = max min k(x,y) = k(i,5). (See [13].)
yZO x y;O x

Remark 5: Stochastic Programs satisfying condition (i) or (ii) of

Theorem 3 will be called well-posed.

Let Lb{X,y) be the classical Lagrangian corresponding to (SP-RHS):

jzb (xb) = g(X) + yT(g(x) - b)

and consider the constant-risk-aversion (CRA) utility function

-It
U(t) = -o P (or any positive affine transformation of it).

It follows from Theorem 2, that the primal problem (DP-RHS) is

equivalent to

(OP-EU) inf sup EU(tb(xy)).
x y O

Therefore, the dual problem (DD-RHS) is equivalent to

(OD-EU) sup inf EU(tb(xy)).
yZO x

To get the full meaning of this dual problem we first prove

• . Lemma 3:

inf EU( b(xy) = EIJ(inf b(xy)) . (44)
x x

A. - .,

J - --- --
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Proof:

EU(inf zb(xy) = E inf U(lb(xy) since U is monotone increasing
x x

n (go(x)+y Tg(x)-y TbEinfI e  P( 0

= E(e" )inf {-e" 0(
X

= inf(Eep ) (-e P inf EU(b(xy))
x r0

Recall that for a non-stochastic problem, the classical Lagrangian

4 dual is the concave program

sup h(y) = inf Ib(xy)
yp-O x

From the lemma we observe that in the stochastic case, the dual problem

(DD-EU) consists of maximizing the expected utility of the Lagrangian dual function

with the utility function being of the CRA-type. Yore precisely,

combining the results in Theorems 2,3 and the Lemma 3 we have actually

proven:

Theorem 4: Consider a well-posed convex stochastic program (SP-RHS).

Let (OP-RHS) be the corresponding entropic penalty Oeterministic Primal

and let (DD-RHS) be the corresponding Deterministic Dual. Then, (D-RHS)

is equivalent to the concave program

(DO-EU) max :1J(h(y)); In(y) = in F z
Sy>_O X x y

where U is the CRA-utility Function with th2 Arrow-Pratt ris indicator

being equal to the reciprocal of thi penalty parameter P.
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CHAPTER 5 - MEAN-VARIANCE APPROXIMATIONS

We obtain in this section quadratic approximations of PE(x), for

the general (SP) problem

(SP) inf{go(x): g(xb) >a}

For every fixed x, the random vector g(x,b) is assumed non-

degenerate, with mean vector

m(x) = Eg(x,b)

and (positive definite) variance-covariance matrix

V(x) = COV(g(x,b))

The variance vector (diagonal of V("))is denoted by a2(x).

Recall from Chap. 3 that

PE(x) = sup {yTa - *(y)}
y O

where

*(Y) = log Eey g(x'b) (45)

Now, straightforward calculations show that

*(o) = 0 (46)

;f v(O) = m(x) (47)

v2 ,(O) = V(x). (48)

Hence, a second-order Taylor expansion of (y) yield the following

approximation PE(x) of PE(x); in term,; of a concave quadratic program.
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Proposition 9:

T 1iTPE(x) = sup {y [a-m(x)] - y V(x)y}
y>O

Another expression for the approximation PE(x) is given in terms of

the following convex quadratic program.

Proposition 10:

W = inf {I (u_m(x))Tv(x)-l(u_m(x))u>_a

Proof: By Proposition 7: PE(x) = inf **(u) where *" is the conjug-
u2a

ate function of * in (45). Thus it remains to show that a second

order approximation * of *" is

= I (u-m(x))T v(x)Y'(u-m(x)). (49)

Since the gradient of i and its conjugate are inverse operators,

i.e. V** = V*-1, (see F12], Chap. 26) it follows from (47) that

v4*(m(x)) = 0 (50)

and so, by (26) and (46), also

4*(re(x)) = 0 (51)

Now

v2 * = v(v.P*) = V((V~) " ] = [V ,(V,'I) " , by the Inverse

Function Theorem, in particular then, by (47), (48):

W2I*mx)) = V(x) -I •(2

A secord order Taylor expa;ision of *:

.'*(u) = *(m(i))+(u-n(x))TVu''(,(x)) + (u-m(x))Tv2,,k(m(x))(u-m(x)) (53)

indeed egrees with (49) by substituting (50)-(52) in (53). 0

- ,-7 T.
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Remark 6: If the random vector g(x,b) is jointly Norml then

yT T~~b YTV)
Eey g(x,b) =exp(y m(x) - y v(x)y)

so, g(y) is quadratic, and hence coincides with its Taylor series

approximation ;(y). The same is true of course for 0. Therefore,

the approximations PE(x) in Propositions 9 and 10 are exact.

If the constraints gi(x,b) > ai are independent we can use

Proposition 8 and the Taylor expansion (49) to obtain:

Proposition 11: For (SP) with independent constraints, a second order

apprcximations PE(x) of PE(x) is

PEWx) ((ai - mi(x))+]
Sc(x)

where

mi(x) Ebgi(x,bi), c?(x) = variance of gi(x,bi).
1i 1

For stochastic RHS programs (SP-RHS) the above approximation

simplifies as follows: let . = Eb, denote by V the variance-

covariance matrix of b, and by uZ the variance of bi. Then, by
1V

Proposition 9,

* PE(x) = sup y . g(x)) - yTVy .

When b - N(l,,V) the approximation is exact; compare with Example 2.

The approximate entropic penalty PE induces an ApproximateEI
Deterministic Primal problem to (SP):

.(ADP) inf (g() + pP(x)}
xIX

-- - - -



- 36 -

By Proposition 9,this problem can be stated in terms of the saddle

function

k(x,y) = g(x) + pyT (a-m(x)) - }Y TV(x)y]

as

(ADP) inf sup k(x,y)
x ykO

In the case of independent constraints, an explicit representation

of (ADP), based on Proposition 11 is

(ADP) inf 0 (x) + p -- 1 [(ai -m ix o (x)

9 This, further simplifies for a Stochastic RHS problem to (see Prop. 11):

inf {g(x) + 2 Z I [9x ) p)]2} (54)
£1

x 1 90 2a

Remark 7: If the variance of bi (oZ) is large, then as seen from

(54), the contribution of the i-th constraint to the penalty PE is

small. Therefore, "ambiguous constraints" are effectively ignored in

the Approximate Deterministic Primal. The quantity 1/1a thus

serves as a "built-in" penalty parameter for the i-th constraint.

Remark 8: The approximate penalty function E doas not necessarily

- possess the property that surely infeasible solutio. s are ruled out.

Therefore, in (ADP) one should add tUe constraints 5(x) > a (see

Chap. 2). For (SP-RHS) the added const,'aint are g(x) bma x*

~A . .7
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